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Dynamics of on-line learning in radial basis function networks
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On-line learning is examined for the radial basis function network, an important and practical type of neural
network. The evolution of generalization error is calculated within a framework which allows the phenomena
of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of
training are elucidated, and the role of the learning rate described. The three most important stages of training,
the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the
convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the
evolution of the mean system parameters, the variances of these parameters are derived and shown to be
typically small. Finally, the analytic results are strongly confirmed by simulations.@S1063-651X~97!09407-5#

PACS number~s!: 87.10.1e, 02.50.2r, 05.90.1m
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I. INTRODUCTION

The aim of supervised learning in neural networks is
approximate an unknown target mappingf T :X→Y, where
X andY represent the input and output space, respectiv
as closely as possible given a set of possibly noise-corru
examples~the training set D) generated fromf T . To quan-
tify the performance of a network at this task, one wou
ideally like to know the average deviation of the network
estimate from the target function—this is known asgenerali-
zation error. From a practical perspective, generalization
ror is unavailable; it can be approximated by utilizing atest
set, again generated fromf T , which is distinct from the
training set. It would be very useful if it were possible
make general statements concerning the generalization
that could be expected in the average case. In this paper
calculate the evolution of the average generalization erro
well as the evolution of key parameters that describe
learning system, for the radial basis function network~RBF!.

Several frameworks are available which facilitate analy
investigation of learning and generalization in supervis
neural networks, such as the statistical physics methods~see
@1# for a review!, the Bayesian framework~e.g.,@2#! and the
probably approximately correct~PAC! method @3#. These
tools have principally been applied to simple networks, su
as linear and boolean perceptrons, and various simplifi
tions of the committee machine~see, for instance,@4# and
references therein!. It has proven very difficult to obtain gen
eral results for the commonly used multilayer networks, su
as the sigmoid multilayer perceptron~MLP! and the RBF.

For RBFs, some analytic studies exist which focus prim
rily on generalization error: in@5,6#, average case analyse
are performed employing a Bayesian framework to stu
RBFs under a stochastic training paradigm. In@7#, a bound
on generalization error is derived under the assumption
the training algorithm finds a globally optimal solution. D
tails of studies of RBFs from the perspective of the PA
framework can be found in@8# and references therein. Thes
methods focus on a training scenario in which a mode
trained on afixed setof examples using a stochastic trainin
method.
561063-651X/97/56~1!/907~12!/$10.00
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There are several studies which are concerned with un
standing the dynamics ofon-line gradient descent training
scenarios, whereby network parameters are modified a
each presentation of an example@9–11#; these studies exam
ine the evolution of system parameters primarily in t
asymptotic regime. A similar method, based on examin
the dynamics of overlaps between characteristic system
tors in on-line training scenarios has been suggested in@12–
15# for investigating the learning dynamics in the ‘‘soft com
mittee machine’’~SCM!. This approach provides a comple
description of the learning process, formulated in terms
the overlaps between vectors in the system, and can be e
extended to include general two-layer networks@15,17#. The
training dynamics in discrete systems has been examine
several authors employing a variety of techniques@18–22#,
some of which offered improved training algorithms.

We present a method for analyzing the behavior of RB
in an on-line learning scenario which allows the calculati
of generalization error as a function of a set of variab
characterizing the properties of the adaptive parameter
the network. The dynamical evolution of the means and
variances of these variables can be found, allowing not o
the investigation of generalization ability, but also allowin
the internal dynamics of the network, such as specializa
of hidden units, to be analyzed. This tool has previously b
applied to MLPs@13–15#; earlier work on RBFs from an
on-line learning perspective can be found in@17#.

II. THE RBF NETWORK AND THE ON-LINE LEARNING
PARADIGM

RBF networks have been successfully employed to p
form supervised learning in many real-world tasks; they ha
proved a valuable alternative to MLPs. These tasks incl
chaotic time-series prediction@23#, speech recognition@24#,
and data classification@25#.

The RBF is a universal approximator for continuo
mappings—it can approximate any continuous function
arbitrary accuracy given a sufficient number of hidden un
@26#. The RBF architecture consists of a two-layer netwo
~see Fig. 1! in which each layer is fully connected to it
907 © 1997 The American Physical Society
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908 56JASON A. S. FREEMAN AND DAVID SAAD
successor. For simplicity, a single output node is utiliz
throughout the analysis. The activation function of the h
den nodes is radially symmetric in input space; the mag
tude of the activation given a particular datapoint is usuall
decreasing function of the distance between the input ve
of the datapoint and the center of the basis function. T
output layer computes a linear combination of the activati
of the basis functions, parameterized by the weightsw be-
tween hidden and output layers. The function computed
an RBF network withK hidden units is therefore

f S~j!5 (
b51

K

wb sb~j! 5w•s, ~1!

where j is the input vector applied to the input layer,sb
denotes the response of basis functionb, ands represents the
vector of hidden unit responses of the network.

The most common choice for the basis functions is
Gaussian function, which will be employed as the hidd
unit transfer function throughout the paper. Therefore
response of basis functionb to input vectorj is

sb~j!5expS 2
ij2mbi2

2sB
2 D , ~2!

where each hidden node is parametrized by two quantitie
centerm in input space, corresponding to the vector defin
by the weights between the node and the input nodes, a
width sB .

Two general methodologies exist which allow the adju
ment of the parameters of the RBF to approximate the ta
function. One approach involves fixing the parameters of
hidden layer~both the basis function centers and width!
using an unsupervised technique such as clustering, sett
center on each data point of the training set, or even pick
random values~for a review see@27#!. This leaves only the
hidden-to-output weightsw to adapt, which makes the prob
lem linear in those weights. Although fast to train, this a
proach generally results in suboptimal networks since
basis function parameters are not fixed with respect to
targets in the training data, and do not take account of
values ofw. The alternative is to adapt the hidden lay
parameters, either just the center positions or both ce
positions and widths, in conjunction with the adaptation
w. This renders the problem nonlinear in the adaptable

FIG. 1. RBF network architecture.
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rameters, and hence requires an optimization technique,
as gradient descent, to estimate the parameters. The se
approach is computationally more expensive, but usu
leads to greater accuracy of approximation. This paper inv
tigates the nonlinear approach in which basis function c
ters are continuously modified using gradient descent to
low convergence to more optimal models.

There are two methods in use for gradient descent
batch learning, one attempts to minimize the additive train
ing error over the entire dataset; adjustments to parame
are performed once the full training set has been presen
The alternative approach, examined here, ison-line learning,
in which the adaptive parameters of the network are adjus
after each presentation of a new datapoint; obviously
may employ a method which is a compromise between
two extremes. There has been a resurgence of interest
lytically in the on-line method, as technical difficultie
caused by the variety of ways in which a training set of giv
size can be selected are avoided, so techniques such a
replica method are unnecessary.

III. GENERALIZATION AND SYSTEM DYNAMICS

It is difficult to examine generalization without havin
somea priori knowledge of the target function since for an
finite number of datapoints, there are an infinite number
functions that will fit these points exactly. In this work, w
utilize a student-teacher framework, in which a teacher n
work produces the training data which is then learned by
student. This has the advantage that we can control the le
ing scenario precisely, facilitating the investigation of cas
such as the exactly realizable case, in which the studen
chitecture matches that of the teacher, the over-realiza
case, in which the student can represent functions that ca
be achieved by the teacher, and the unrealizable cas
which the student has insufficient representational powe
emulate the teacher.

A training set consists ofP input-output pairs (jm,ym),
where 1<m<P. In the training scenario examined here, t
components of the typicalN dimensional input vectorjm are
chosen as uncorrelated Gaussian random variables of m
0, variancesj

2 , while the scalar outputym is generated by
applyingjm to the deterministic teacher RBF. This represe
ageneraltraining scenario since, being universal approxim
tors, RBF networks can approximate any continuous m
ping to a desired degree. Noise is not employed in this pa
this will be investigated in a further publication. The ma
ping implemented by the teacher is denoted byf T ; the vector
of hidden-to-output weights of the teacher is represented
anM dimensional vectorw0 while the center of teacher bas
function ~TBF! u is denoted bynu . The vector of teacher
basis function responses to input vectorj is represented by
anM dimensional vectort. For simplicity, the TBF widths
are equal to those of the student; the framework does a
them to differ, but this complicates matters greatly witho
adding much insight. The function computed by the teac
is therefore

f T~j!5 (
u51

M

wu
0expS 2

ij2nui2

2sB
2 D 5w0

•t. ~3!
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56 909DYNAMICS OF ON-LINE LEARNING IN RADIAL . . .
We approach the problem of calculating system evolut
by replacing the set ofN-dimensional vectorsm, which de-
scribe the position in input space of the student basis fu
tions, by a set of macroscopic variables representing
means and variances of the overlap
Qbc5mb•mc ,Rbu5mb•nu , andTuv5nu•nv . We will con-
centrate on the evolution of the means of these quantities
relevance of their variances will be quantified and examin
as well. The evolution of the system will be described
terms of the evolution of these macroscopic variables an
the hidden-to-output weightsw.

The definition of generalization error that we employ
the most common in the neural networks literature—the q
dratic deviation betweenf T and f S

EG5^ 1
2 ~ f S2 f T!2&, ~4!

where^•••& denotes an average over input space.
Substituting Eqs.~2! and ~3! into Eq. ~4! gives

EG5
1

2H(bc wbwc^sbsc&1(
uv

wu
0wv

0^tutv&

22(
bu

wbwu
0^sbtu&J . ~5!

The indicesb,c, . . . ,u,v, . . . , represent student and teach
centers, respectively, running from 1 toK and toM accord-
ingly. We assume the input distribution to be Gaussian,
the averages are Gaussian integrals and can be perfo
analytically. Each average has dependence on combina
of Q,R, and T depending on whether the averaged ba
functions belong to student or teacher; the full expressio
given in the Appendix.

A. System dynamics

The learning dynamics in this work follows the gradie
descent rule, mb

p115mb
p1h/(NsB

2)db(j2mb), where
db5( f T2 f S)wbsb andh is the learning rate which is explic
itly scaled with 1/N. Expressions for the time evolution o
the mean overlaps ofQ andR can be derived

^ DQbc &5
h

NsB
2 ^@db~j2mb

p!•mc
p1dc~j2mc

p!•mb
p#&

1S h

NsB
2 D 2^dbdc~j2mb

p!•~j2mc
p!&, ~6!

^ DRbu &5
h

NsB
2 ^db~j2mb

p!•nu&. ~7!

The hidden-to-output weights can be treated similarly.
general, one may choose different learning rates for the
namics of the centers and of the hidden-to-output weig
Here, we use the same learning rate but scale it differe
~with 1/K, in agreement with results obtained by Riegler@28#
for the MLP!, yielding

^ Dwb &5
h

K
^~ f T2 f S!sb&. ~8!
n
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Note that scaling the learning rate with 1/K does not make a
significant difference in this case, since the thermodyna
limit has not been employed forN, in comparison to the
exact MLP calculation where adiabatic elimination should
employed for restoring the self-averaging properties of
overlaps@28#.

These averages are again Gaussian integrals, so they
be carried out analytically. The averaged expressions
DQ,DR, andDw are given in the Appendix.

Iterating the difference equations~6!–~8!, allows the evo-
lution of the learning process to be tracked. This allows o
to examine facets of learning, such as specialization of
hidden units. Since generalization error depends onQ,R, and
w, one can also use these equations with Eq.~5! to track the
evolution of generalization error.

B. Variance and the thermodynamic limit

Previous work in this area@12–15# has relied upon the
thermodynamic limit~i.e.,P→`,N→` andP/N5a, where
a is finite!. Taking this limit makes the macroscopic var
ables self-averaging, allows one to ignore fluctuations in
updates of the means of the overlaps due to the random
of the training examples, and permits the difference eq
tions of gradient descent to be considered as differen
equations. The thermodynamic limit is hugely artificial f
local RBFs; as the activation is localized, theN→` limit
implies that a basis function responds only in the vanishin
unlikely event that an input point falls exactly on its cente
there is no obvious reasonable rescaling of the basis fu
tions „for instance, utilizing exp@2(ij2mbi2)/(2NsB

2)#
eliminates all directional information as the cross te
j•mb vanishes in the thermodynamic limit…. The price paid
for not taking this limit is that one has noa priori justifica-
tion for ignoring the fluctuations in the update of the ada
tive parameters due to the randomness of the training
ample.

By making assumptions as to the form of these fluct
tions, it is possible to derive equations describing their e
lution; the method is mentioned in@9# and also in@29# for the
simpler case of the SCM; we have extended it to deal w
adaptive hidden-to-output weights~see also@15#!.

To quantify the effect of the variances we will derive a s
of dynamical equations, parallel to those representing
dynamics of the means, for describing the dynamics of
variances. As the learning rate is usually small we will foc
on first order terms inh, which dominate the dynamics, an
ignore update terms of orderh2. Casting the update Eqs
~6!–~8! into a general form, wherea represents a generi
system parameter and the scaling parameterLa is set toN for
Q andR, and toK for w

ap115ap1
h

La
Fa . ~9!

We then assume~similar to @29#! that the update function
F and the parametera can be written in terms of a mean an
fluctuation, such that

Fa5 F̄ a1F̃a and a5 ā1Ah/Laã , ~10!
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910 56JASON A. S. FREEMAN AND DAVID SAAD
where ā denotes an average value andã represents a fluc
tuation due to the randomness of the example. The s
correction terms of@29# are neglected, as in@9#, as they are
much smaller than the included fluctuation terms.

Combining Eqs.~9! and ~10!, and averaging with respec
to the input distribution, we arrive at a set of coupled diffe
ence equations which describe the evolution of the varian

D^ ã b̃&5
h

ALaLb
S (

c
^ ã c̃ &

] F̄ b

] c̄
1(

c
^ b̃ c̃ &

] F̄ a

] c̄
1^F̃aF̃b& D .

~11!

Applying this general method to each pair of adaptive qu
tities allows the evolution of the variances for the entire s
tem to be calculated. The averages are again Gaussian a
are analytically tractable; the expressions that result for
instantaneous variances^F̃aF̃b& are given in the Appendix.

It has been shown that the variances must vanish asy
totically for realizable cases@9#, and we will show in Sec.
IVF that they are small enough throughout the evolution
the system to allow a description of the system in terms
the evolution of the means.

IV. ANALYZING THE LEARNING PROCESS

Although the framework enables us to consider a w
range of cases we will limit the experiments and the analy
in this paper to realizable cases where the number of stu
basis functions~SBFs! equals the number of teacher bas
functions~TBFs!.

The system evolutions described below are obtained
iterating the difference equations~6!–~8! from random initial
conditions sampled from the following distributions:Qbb
and wb are sampled fromU@0,1024#, while Qbc,bÞc and
Rbc from a uniform distributionU@0,1025#, which represent
random correlations expected by arbitrary initialization
systems of the size we employ. The evolutions compu
describe the mean behavior, assuming the variances are
ligible; these evolutions can then be used to find the evo
tion of generalization error via Eq.~5!.

A. The importance of the learning rate

With all the TBFs positive, analysis of the time evolutio
of the generalization error, overlaps and hidden-to-out
weights for various settings of the learning rate reveals
existence of three distinct behaviors. Ifh is chosen to be too
small ~here,h50.1), there is a long period in which there
no specialization of the SBFs, and no improvement in g
eralization ability: the process becomes trapped in a symm
ric subspace of solutions; this is the symmetric phase. Gi
asymmetry in the student initial conditions~i.e., inR, Q, or
w), or of the task itself, this subspace will always be escap
but the time period required may be prohibitively large@Fig.
2~a!, dotted curve#. The length of the symmetric phase in
creases with the symmetry of the initial conditions. At t
other extreme, ifh is set too large, an initial transient take
place quickly, but there comes a point from which the s
dent vector norms grow extremely rapidly, until the po
where, due to the finite variance of the input distribution a
local nature of the basis functions, the SBFs are no lon
tic
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activated during training@Fig. 2~a!, dashed curve, with
h57.0#. In this case, the generalization error approache
finite value asP→` and the task is not solved. Betwee
these extremes lies a region in which the symmetric subsp
is escaped quickly, andEG→0 asP→` for the realizable
case@Fig. 1~a!, solid curve, withh50.9#. The SBFs become
specialized and, asymptotically, the teacher is emulated
actly. These results for the learning rate are qualitativ
similar to those found for SCMs and MLPs@12–15#.

B. An example of system evolution

There are four distinct phases in the learning proce
which are described with reference to an example of learn
an exactly realizable task. This task consists of a network
three student basis functions~SBFs! learning a graded
teacher of three TBFs, wheregradedimplies that the square
norms of the TBFs~diagonals ofT) differ from one another;
for this task,T0050.5, T1151.0, andT2251.5. As previ-
ously stated, the widths of the student basis functions
considered fixed and equal to those of the teacher for s
plicity; also note that the teacher always produces a co
nous mapping and noise is not employed.

For this particular task, we choose the teacher to be
correlated, with the off-diagonals ofT set to 0, and the
teacher hidden-to-output weightsw0 to 1. The learning pro-
cess is illustrated in Figs. 2~a!–2~d!; Fig. 2~a! ~solid curve!
shows the evolution of generalization error, calculated fr
Eq. ~5!, while Figs. 2~b! and 2~c! show the evolution of the
equations for the means ofR, Q, andw, respectively, calcu-
lated by iterating Eqs.~6!–~8! from random initial conditions
as described above. Input dimensionalityN58, learning rate
h50.9, input variancesj

251, and basis function width
sB51 were employed.

The picture that emerges mirrors that of the SCM a
MLP @14,15#. Initially, there is a shorttransient phase in
which the overlaps and hidden-to-output weights evo
from their initial conditions until they reach an approx
mately steady value (P50 to P54000). Thesymmetric
phase then begins, which is characterized by a plateau in
evolution of the generalization error@see Fig. 2~a!, solid
curve,P54000 toP553104#, corresponding to a lack o
differentiation amongst the hidden units; they are unspec
ized and learn an average of the hidden units of the teac
so that the student center vectors and hidden-to-ou
weights are similar@Figs. 2~b!–2~d!#. The difference in the
overlapsR between student center vectors and teacher ce
vectors@Fig. 2~b!# is onlydue to the difference in the length
of various teacher center vectors; if the overlaps were n
malized, they would be identical. The symmetric phase
followed by asymmetry-breakingphase in which the SBFs
learn to specialize, and become differentiated from one
other (P553104 to P51.73105). Finally there is a long
convergencephase, as the overlaps and hidden-to-out
weights reach their asymptotic values. Since the task is r
izable, this phase is characterized byEG→0 @Fig. 2~a!, solid
curve#, and by the student center vectors and hidden
output weights approaching those of the teacher~i.e.,
Q005R0050.5,Q115R1151.0,Q225R2251.5, with the off-
diagonal elements of bothQ and R being zero;
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FIG. 2. The exactly realizable scenario with positive TBFs. Three SBFs learn a graded, uncorrelated teacher of three TB
T0050.5,T1151.0, andT2251.5. All teacher hidden-to-output weights are set to 1.~a! describes the evolution of the generalization error
a function of the number of examples for several different learning rates (h50.1,0.9,7.0);~b! and ~c! follow the evolution of overlaps
between student and teacher center vectors and among student center vectors, respectively, while~d! monitors the evolution of the mea
hidden-to-output weights.
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;b,wb51). Arbitrary labels of the SBFs were permuted
match those of the teacher.

These phases are generic in that they are observed, s
times with some variation such as a series of symmetric
symmetry-breaking phases, in every on-line learning s
nario for RBFs so far examined.

C. Task dependence

The symmetric phase is a phenomenon which depend
the symmetry of the task as well as that of the initial con
tions. One would expect a shorter symmetric phase in inh
ently asymmetric tasks. To examine this, a task similar
that of Sec. IVB was employed, with the single change be
that the sign of one of the teacher hidden-to-output weig
was flipped, thus providing two categories of targets: po
tive and negative. The initial conditions of the student
mained the same as in the previous task, withh50.9.

The evolution of generalization error and the overlaps
this task are shown in Figs. 3~a! and 3~b!, respectively. Di-
viding the targets into two categories effectively elimina
e-
d
e-

on
-
r-
o
g
ts
i-
-

r

s

the symmetric phase; this can be seen by comparing the
lution of the generalization error for this task@Fig. 3~a!#,
dashed curve# with that for the previous task@Fig. 3~a!, solid
curve#. There is no longer a plateau in the generalizat
error. Correspondingly, the symmetries between SBFs br
immediately, as can be seen by examining the overlaps
tween student and teacher center vectors@Fig. 3~b!#; this
should be compared with Fig. 2~b! which denotes the evolu
tion of the overlaps in the previous task. Note that the p
teaus in the overlaps@Fig. 2~b!, P54000 toP553104# are
not found for the asymmetric task.

The elimination of the symmetric phase is an extre
result caused by the small size of the student network~three
hidden units!. For networks with many hidden units, on
finds instead a cascade of subsymmetric phases, each sh
than the single symmetric phase in the corresponding
with only positive targets, in which there is one symme
between the hidden units seeking positive targets and ano
between those seeking negative targets.

This suggests a simple and easily implemented strat
for increasing the speed of learning when targets are
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912 56JASON A. S. FREEMAN AND DAVID SAAD
dominantly positive~negative!: eliminate the bias of the
training set by subtracting~adding! the mean target from
each target point. This corresponds to an old heuristic am
RBF practitioners. It follows that the hidden-to-outp
weights should be initialized from a zero-mean distributio
Alternatively, a bias unit could be used, but this adds ano
parameter to the training process.

D. Analyzing the symmetric and symmetry-breaking phases

The symmetric phase, in which there is no specializat
of the hidden units, can be analyzed in the realizable cas
employing a few simplifying assumptions. It is a pheno
enon that is predominantly associated with smallh, so terms
of h2 may be neglected. The hidden-to-output weights
clamped to11. The teacher is taken to beisotropic: TBF
centers haveidentical normsof 1, each having no overlap
with the others, thereforeTuv5duv . This has the result tha

FIG. 3. The exactly realizable scenario defined by a teac
network with a mixture of positive and negative TBFs. Three SB
learn a graded, uncorrelated teacher of three TBFs w
T0050.5, T1151.0, andT2251.5.w0

051,w1
0521, andw2

051. ~a!
describes the evolution of the generalization error for this case
presents for comparison the evolution in the case of all posi
TBFs, while ~b! shows the evolution of the overlaps between s
dent and teacher centersR.
ng

.
er

n
by
-

e

the student normsQbc are very similar, as are the studen
student correlations, soQbb[Q andQbc,bÞc[C, whereQ
becomes the square norm of the SBFs, andC is the overlap
between any two different SBFs.

Following the geometric argument of@14#, which is con-
sistent with the numerical results, in the symmetric pha
the SBF centers are mostly confined to the subspace spa
by the TBF centers. SinceTuv5duv , the SBF centers can b
written in the orthonormal basis defined by the TBF cente
with the components being the overlapsR:
mb5(u51

M Rbunu . As the teacher is isotropic, the overlap
are independent of bothb andu and thus can be written in
terms of a single parameterR. Further, this reduction to a
single overlap parameter leads toQ5C5MR2, so the evo-
lution of the overlaps can be described as a single differe
equation forR. The analytic solution of Eqs.~6!–~8! under
these restrictions is still rather complicated. However, sin
we are primarily interested in large systems, i.e., largeK, we
examine the dominant terms in the solution. Expanding
1/K and discarding second order terms renders the sys
simple enough to solve analytically for the symmetric fix
point; fixed point values will be denoted likeR*

R*5
1

KH 11sB2sBexpF S 1

2sB
DsB11

sB12G J . ~12!

One should point out that this expression breaks down
certain values ofsB as the first order term in 1/K as well as
higher order terms diverge~an approximate expression ma
also be derived for the divergence point!. The stability of the
fixed point, and thus the breaking of the symmetric pha
can be examined via an eigenvalue analysis of the dynam
of the system near the fixed point. We map the equation
motion ~6! and ~7! to equations of deviations from the sym
metric fixed point viar5R2R* , s5S2S* , q5Q2Q* ,
c5C2C* . Remembering the geometrical argument abo
the student weight vectors can be expanded in terms of
student-teacher overlaps; as we are in the smallh regime,
components which are orthogonal to the space spanne
the teacher vectors,mb

' may be neglected, so that the stude
normsQ and overlapsC are completely determined by th
student-teacher overlaps. Writing these overlaps
Rbu5Rdbu1S(12dbu) gives the relations Q
5R21S2(K21) andC52RS1S2(K22). If these relations
are expanded to first order in the deviationsr ands, it can be
seen thatq5c52R* @r1s(K21)#, so thatQ*5C* is pre-
served to first order; this is also consistent with the trunca
equations of motion if they too are expanded to first ord
Thus the dynamical quantities reduce to three:r ,s andc.

Performing an eigenvalue analysis on the resulting sys
reveals one dominant positive eigenvalue (l) that scales
with K and represents a perturbation which breaks the s
metries between the hidden units by amplifying asymmet
in the initial conditions~see@16# for a detailed analysis o
this for the SCM!; the remaining modes, which also sca
with K, are irrelevant as they preserve the symmetry. T
result is in contrast to that for the SCM~ @14#!, in which the
dominant eigenvalue scales with 1/K. This implies that for
RBFs the more hidden units in the network, thefaster the
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symmetric phase is escaped, resulting in negligible symm
ric phases for large systems, while in SCMs the opposit
true; this result has been confirmed by simulation. This d
ference is caused by the contrast between the localized
ture of the basis function in the RBF network and the glo
nature of sigmoidal hidden nodes in SCM. In the SCM ca
small perturbations around the symmetric fixed point res
in relatively small changes in error since the sigmoidal
sponse changes very slowly as one modifies the weight
tors. On the other hand, the Gaussian response decays
nentially as one moves away from the center, so sm
perturbations around the symmetric fixed point result in m
sive changes that drive the symmetry breaking. WhenK in-
creases the error surface looks very rugged emphasising
peaks and increasing this effect, in contrast to the SCM c
where more sigmoids means a smoother error surface.

E. Calculating the convergence

The speed and conditions of convergence of the on
gradient descent process is of great interest, both practic
and theoretically. To investigate this for the RBF in the
alizable case, we again use an isotropic teacher, define
Tuv5duv andwu

051. This means the evolution of each st
dent hidden unit will be very similar, so the evolving syste
can be simplified to five adaptive variable
Qbc5Qdbc1C(12dbc), Rbu5Rdbu1S(12dbu) and
wb5w, controlled by Eqs.~6!–~8!. Note that we do not ex-
pect the variances to play a significant role in defining
maximal and optimal learning rates as they have been sh
to vanish in the asymptotic regime.

Linearizing these equations about the known fixed po
of the dynamics,Q51, C50, R51, S50, w51 yields the
eigenvalues controlling the rate of convergence and the
bility. There is a single~nonlinear inh) critical eigenvalue,
l1, which controls stability, a linear eigenvalue,l2, which
can influence convergence rate, and three further eigenva
which play no significant role, being much smaller for a
values ofh. The eigenvalues are illustrated in Fig. 4~a! for a
network of ten hidden units with input dimensionN510.
The maximum learning rate, defined by the crossing of
zero line, can be seen to be controlled solely byl1; note that
this maximum only applies during convergence, not nec
sarily during the other phases of learning. The theory p
dicts a maximum learning rate ofh533 for this scenario; the
accuracy of the method was tested by training real RBF
works by initializing them near the known fixed point, an
determining the value ofh at which convergence failed t
occur, which in this case wash532.3 with standard devia
tion of 0.8.

The rate of convergence, defined for a particularh by the
smaller ofl1 andl2, is optimized either by settingh to the
minimum ofl1 or to the intersection ofl1 with l2, depend-
ing on the exact learning scenario~e.g., for other teache
vector lengths or basis widths!.

It is interesting to compare the convergence of the sys
with adaptive hidden-to-output weights to that where
hidden-to-output weights are fixed@17#. Figure 4~b! shows
the two significant eigenvalues for both cases in ident
scenarios.l1 is unchanged, so the maximum learning rate
unaffected and is therefore a function of the hidden layer,
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FIG. 4. Convergence phase.~a! shows the eigenvalues for th
system with adaptive hidden-to-output weights. Onlyl1 andl2 are
significant;l1 controls the maximum learning rate, whilel2 can
influence the optimal learning rate in some cases~not in the ex-
ample shown here!. ~b! compares the eigenvalues for systems w
adaptive and fixed hidden-to-output weights, showing thatl1 is
unaffected.~c! shows the scaling of the maximum and optim
learning rates withK. The maximum learning rateh c scales with
1/K; for fixed hidden-to-output weights, the optimal learning ra
h opt also scales with 1/K, while for adaptive weights,h opt rapidly
approachesh c .
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FIG. 5. Quantification of the variances.~a! and ~b! show the theoretical variances, plotted as error bars on the mean, for the dom
overlapsR00 andR11 and for the hidden-to-output weightsw0 andw1, respectively, for a realizable task involving two SBFs learning t
TBFs. The fluctuations are negligible; this is typically true, unless the task and initial conditions are highly symmetric.~c! and~d! compare
the theoretical variances to those from simulations in which RBFs were trained 1000 times on the above task. The variances for the
overlaps and hidden-to-output weights are shown, and it can be seen that there is an excellent correspondence.
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the output layer~this is also true for the MLP@15#!. With
fixed hidden-to-output weights, the gradient ofl2 becomes
much steeper and in fact does not affect the rate of con
gence which is controlled solely byl1.

The scaling of the maximum and optimal learning ra
with the number of hidden units can also be found. For b
fixed and adaptive hidden-to-output weights, the maxim
learning rate scales as 1/K. For fixed hidden-to-outpu
weights, the optimal learning rate also scales as 1/K, while
for adaptive hidden-to-output weights, the situation is m
complicated. In parameter regions where the converge
rate is optimized by minimisingl1, the optimal learning rate
again scales as 1/K; however, in regions where optimizatio
is achieved by finding the intersection ofl1 and l2, h
changes at a slower rate than 1/K. These effects are illus
trated in Fig. 4~c!, in which maximum and optimal learnin
rates are plotted against 1/K. Note that asK increases,h opt
approachesh c rapidly for the adaptive hidden-to-output ca
(l2 becomes less steep!, implying that it becomes difficult to
optimize the process and still obtain convergence to the
rect fixed point.
r-

s
h

e
ce

r-

F. Quantification of the variance

To demonstrate that it is reasonable to consider only
mean of the updates of the system parameters, we pre
results quantifying the effect of the variance for a typic
case, showing that its contribution is negligible in compa
son with the mean values. In pathological cases in which
task and the initial conditions of the system are highly sy
metric, it is possible to obtain variances which are mu
larger than those which typically occur—this issue is e
plored for the SCM in@29#.

To examine the effect of the variance we use a train
scenario in which a student network comprising two SBFs
trained on examples generated by a two node teacher.
initial conditions were constructed by randomly initializin
the weights of an RBF network by drawing each input-
hidden and hidden-to-output weight from U@0,0.1#, and then
mapping the network into the appropriate system parame
so as to provide realistic conditions. The input dimens
N was set to 10, and the learning rateh to 0.1. The mean and
variance update equations~6!–~8! and ~11! were iterated
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FIG. 6. Comparison of theoretical results with simulations. The simulation results are averaged over 50 trials; the labels of th
hidden units were permuted where necessary to make the averages meaningful. The empirical generalization error was approximat
test error on a 1000 point test set. Error bars on the simulations are at most the size of the larger asterisks for the overlaps@~b! and~c!#, and
at most twice this size for the hidden-to-output weights@~d!#. Input dimensionalityN55, learning rateh50.9, input variancesj

251 and
basis function widthsB
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from these initial conditions until the means had reached
approximately steady state, thus providing a trajectory
each variance.

In Figs. 5~a! and 5~b!, the fluctuations are plotted as err
bars on the mean for the dominant student-teacher over
R and for the hidden-to-output weightsw ~fluctuation mag-
nitudes forQ are very similar to those ofR). The magnitudes
of the fluctuations are very small, particularly so forR. For
w, the peak ratio of fluctuation magnitude to mean is a
proximately 0.012, while forR, it is 0.008. These ratios ar
typical for nonpathological scenarios. Note that for realiza
cases, the fluctuations must eventually disappear.

To demonstrate that the theoretical calculation of the e
lution of the variances gives valid results, gradient desc
learning was used to train actual RBF networks 1000 tim
for the configuration and initial conditions described abo
The average evolutions of the parameters were employe
calculate empirical fluctuations about the means. The res
of this are plotted in Figs. 5~c! and 5~d!, in which the theo-
retical fluctuations are shown versus the simulat
fluctuations—it can be seen that there is very good ag
n
r

ps

-

e

-
nt
s
.
to
lts

n
e-

ment between the theory and simulation. The slight discr
ancy up to aboutP51.53106 is, we believe, due to the fac
that terms ofh2 are discarded in the theory.

G. Simulations

To demonstrate the validity of the theoretical averag
case results, we compared the evolution of the system fo
by iterating Eqs.~6!–~8! to empirical results found by train
ing real RBF networks via on-line gradient descent. The e
pirical values ofQ,R, andw were calculated from the trajec
tories of the weights during training. Generalization err
was empirically estimated via the average error on a 10
point test set, and the results were averaged over 50 tr
with the arbitrary labels of the SBFs permuted appropriat
to ensure the averages were meaningful.

We present the results from a typical set of trials: in th
realizable scenario, three SBFs learn three TBFs w
h50.9 andN55. The excellent correspondence between
theory and simulations is demonstrated in Fig. 6. Figure 6~a!
shows theoretical versus empirical generalization error—
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916 56JASON A. S. FREEMAN AND DAVID SAAD
theoretical value is always within one standard deviation
the empirical value. In Figs. 6~b!–6~d!, the theoretical trajec-
tories ofQ,R, andw are plotted versus their empirical cou
terparts; again, the correspondence is excellent. Error
are not shown here as they are approximately the size o
symbols.

V. CONCLUSION

On-line learning using the gradient descent algorithm
been examined for the RBF by employing a method wh
allows the calculation of generalization error as well as
elucidation of the features of the learning process, such
the specialization of the hidden units.

The four distinct stages of training were highlighted
initially there is a short transient phase as the parame
move from their initial values into the symmetric phase,
which the hidden units are undifferentiated. Specializat
gradually develops in the third, symmetry-breaking phase
the hidden units move towards their particular destinatio
finally there is a convergence phase in which the parame
asymptotically reach their final values. The role of the lea
ing rate was also examined—with a small learning rateh,
training proceeds unnecessarily slowly, with a long trapp
time in the symmetric phase. Withh too high, the process
does not converge to the correct fixed point; the magnitu
of the student center vectors grow until the center plays
part in the learning process. Between these extremes li
range in which the process converges quickly to the cor
target.

The relative importance of the stages of training depe
to a large extent on the nature of the task itself. When
task is highly symmetric, the symmetric phase becom
dominant; in this case it would be desirable to introdu
artificial methods of breaking the symmetry of the stude
For very asymmetric tasks, the symmetric phase may be
quickly or even nonexistent. Since in practical use the tas
usually understood poorly, it is important to understand
behavior of the network over a whole range of tasks.

The symmetric phase was analyzed~for the realizable
case!, and the value of the system parameters at the symm
ric fixed point found. The breaking of the symmetric pha
was also examined via an eigenvalue analysis—there
significant behavioral difference between the RBF and
SCM in that the more hidden units, the greater the length
the phase in the SCM, but the shorter its length in the R
This is due to the difference in the properties of the acti
tion function for the networks—the RBF has a localized a
tivation function, while that of the SCM is global.

The convergence properties of the system in the realiz
case were also examined via eigenvalue analysis. A si
critical eigenvalue controls stability of the target fixed poi
and thus determines the maximum value ofh that can be
employed (h c). The optimal settingh opt of h can also be
found, which depends on a combination of the critical eig
value and a second~linear inh) eigenvalue. The results wer
compared to those previously found for the RBF using n
adaptive hidden-to-output weights;h c was unchanged, an
is thus a function of the hidden layer.h opt with adaptive
hidden-to-output weights approachesh c as the number of
hidden units increases, so it becomes very hard to optim
f
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the convergence correctly. For both cases,h c was found to
scale as 1/K.

As the thermodynamic limit could not be employed,
was necessary to quantify the variances of the system pa
eters to ensure that the average value was meaningful. E
tions describing the evolution of these variances were
rived, and it was shown that, for a typical case, the varian
are small. The equations for the evolution of the means
the variances were shown to be valid descriptions of the
system via simulations.

As a next stage we intend to analyze the use of noise
regularizers within on-line learning for the RBF. We expe
the addition of output noise to the teacher to affect
asymptotic values of the overlaps, and produce a nonz
asymptotic generalization error; it may also change
length and values of the overlaps during the symme
phase. We also expect that a learning rate decay scedule
be required for converging to the optimal generalization
ror. The addition of input noise to the teacher is expected
have a similar effect, perhaps with the sensitivity of the tra
ing process to the noise being greater.
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APPENDIX

1. Generalization error

EG5
1

2H(bc wbwcI 2~b,c!1(
uv

wu
0wv

0I 2~u,v !

22(
bu

wbwu
0I 2~b,u!J . ~A1!

DQ, DR, and Dw

^DQbc&5
h

NsB
2 $wb@ J̄ 2~b;c!2Qbc Ī 2~b!#1wc@ J̄ 2~c;b!

2Qbc Ī 2~c!#%1S h

NsB
2 D 2wbwc$K̄4~b,c!

1Qbc Ī 4~b,c!2 J̄ 4~b,c;b!2 J̄ 4~b,c;c!%, ~A2!

^DRbu&5
h

NsB
2 wb$ J̄ 2~b;u!2Rbu Ī 2~b!%, ~A3!

^Dwb&5
h

K
Ī 2~b!. ~A4!

Ī , J̄ , and K̄

Ī 2~b!5(
u

wu
0I 2~b,u!2(

d
wdI 2~b,d!, ~A5!

J̄ 2~b;c!5(
u

wu
0J2~b,u;c!2(

d
wdJ2~b,d;c!, ~A6!
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Ī 4~b,c!5(
de

wdweI 4~b,c,d,e!1(
uv

wu
0wv

0I 4~b,c,u,v !

22(
du

wdwu
0I 4~b,c,d,u!, ~A7!

J̄ 4~b,c; f !5(
de

wdweJ4~b,c,d,e; f !

1(
uv

wu
0wv

0J4~b,c,u,v; f !

22(
du

wdwu
0J4~b,c,d,u; f !, ~A8!
K̄4~b,c!5(
de

wdweK4~b,c,d, f !1(
uv

wu
0wv

0K4~b,c,u,v !

22(
du

wdwu
0K4~b,c,d,u!. ~A9!

I , J, and K

To render the notation more compact, we introduce a
neric overlap parameterU; indicesi , j , f ,g, andh may there-
fore apply to SBFs or RBFs as appropriate,
Ui j5H Qi j if i and j both refer to SBFs

Ri j if i refers to a SBF andj to a TBF

Ti j if i and j both refer to TBFs,

~A10!

I 2~ i , j !5~2l 2sj
2!2N/2 expF2Uii2Uj j1~Uii1Uj j12Ui j !/2sB

2 l 2
2sB

2 G , ~A11!

J2~ i , j ; f !5SUi f1Uj f

2l 2sB
2 D I 2~ i , j !, ~A12!

I 4~ i , j , f ,g!5~2l 4sj
2!2N/2expF2Uii2Uj j2Uf f2Ugg

2sB
2 GexpFUii1Uj j1Uf f1Ugg12~Ui j1Ui f1Uig1Uj f1Ujg1Ufg!

4l 4sB
4 G ,

~A13!

J4~ i , j , f ,g;h!5SUih1Ujh1Ufh1Ugh

2l 4sB
2 D I 4~ i , j , f ,g!, ~A14!

K4~ i , j , f ,g!5S 2Nl4sB
41Uii1Uj j1Uf f1Ugg

4l 4sB
4 1

2~Ui j1Ui f1Uig1Uj f1Ujg1Ufg!

4l 4
2sB

4 D I 4~ i , j , f ,g!. ~A15!
2. Instantaneous variances

Defining, for brevity

KIJJ̄4~ i , j , f ,g!5K̄~ i , j , f ,g!1Ui fU jg Ī 4~ i , j !

2Ujg J̄ 4~ i , j , f !2Ui f J̄ 4~ i , j ,g!.

~A16!

Variances

DQbcDQde51/sB
4$wbwdKIJJ̄4~b,d,c,e!
1wbweKIJJ̄4~b,e,c,d!

1wcwdKIJJ̄4~c,d,b,e!

1wcweKIJJ̄4~c,e,b,d!%, ~A17!

DQbcDRdu51/sB
4$wbwdKIJJ̄4~b,d,c,u!

1wcwdKIJJ̄4~c,d,b,u!%, ~A18!

DRbuDRcv51/sB
4wbwcKIJJ̄4~b,c,u,v !, ~A19!
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DQbcDwd51/sB
2$wb@ J̄ 4~b,d,c!2Qbc Ī 4~b,d!#

1wc@ J̄ 4~c,d,b!2Qbc Ī 4~c,d!#%,
~A20!

DRbuDwd51/sB
2wb$ J̄ 4~b,d,u!2Rbu Ī 4~b,d!%,

~A21!

DwbDwc5 Ī 4~b,c!2Qbc Ī 2~b! Ī 2~c!. ~A22!
-

ti

-
l-
3. Other quantities

l 25
2sj

21sB
2

2sB
2sj

2 , ~A23!

l 45
4sj

21sB
2

2sB
2sj

2 . ~A24!
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