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Dynamics of on-line learning in radial basis function networks
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On-line learning is examined for the radial basis function network, an important and practical type of neural
network. The evolution of generalization error is calculated within a framework which allows the phenomena
of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of
training are elucidated, and the role of the learning rate described. The three most important stages of training,
the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the
convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the
evolution of the mean system parameters, the variances of these parameters are derived and shown to be
typically small. Finally, the analytic results are strongly confirmed by simulati®®063-651X97)09407-5

PACS numbds): 87.10+¢€, 02.50-r, 05.90+m

I. INTRODUCTION There are several studies which are concerned with under-
The aim of supervised learning in neural networks is tostandir!g the dynamics adn-line gradient descent tra}ining
. : scenarios, whereby network parameters are modified after

approximate an unknoyvn target mappifig:X—Y, Wherg each presentation of an examp®e-11]; these studies exam-
X and represent the input and output space, respectivelyine the evolution of system parameters primarily in the
as closely as possible given a set of possibly nmse—corruptegsymptotic regime. A similar method, based on examining
examples(the training set D) generated fronfr. To quan-  the dynamics of overlaps between characteristic system vec-
tify the performance of a network at this task, one wouldtors in on-line training scenarios has been suggestétida
ideally like to know the average deviation of the network’s 15] for investigating the learning dynamics in the “soft com-
estimate from the target function—this is knowngeserali- ~ mittee machine’(SCM). This approach provides a complete
zation error. From a practical perspective, generalization er-description of the learning process, formulated in terms of
ror is unavailable; it can be approximated by utilizingeat  the overlaps between vectors in the system, and can be easily
set again generated fronfir, which is distinct from the extended to include general two-layer network§,17. The
training set. It would be very useful if it were possible to training dynamics in discrete systems has been examined by
make general statements concerning the generalization errggveral authors employing a variety of techniq{&8—23,
that could be expected in the average case. In this paper, vé@me of which offered improved training algorithms.
calculate the evolution of the average generalization error, as We present a method for analyzing the behavior of RBFs
well as the evolution of key parameters that describe thén an on-line learning scenario which allows the calculation
learning system, for the radial basis function netwdBF). of generalization error as a function of a set of variables

Several frameworks are available which facilitate analyticcharacterizing the properties of the adaptive parameters of
investigation of learning and generalization in supervisedhe network. The dynamical evolution of the means and the
neural networks, such as the statistical physics mettses variances of these variables can be found, allowing not only
[1] for a review, the Bayesian frameworte.g.,[2]) and the  the investigation of generalization ability, but also allowing
probably approximately corred?AC) method[3]. These the internal dynamics of the network, such as specialization
tools have principally been applied to simple networks, suctef hidden units, to be analyzed. This tool has previously been
as linear and boolean perceptrons, and various simplifica@pplied to MLPs[13-15; earlier work on RBFs from an
tions of the committee machin@ee, for instancg4] and  on-line learning perspective can be found 1r7].
references therejnlt has proven very difficult to obtain gen-
eral resqlts fqr the cpmmonly used multilayer networks, such,, +4e rBE NETWORK AND THE ON-LINE LEARNING
as the sigmoid multilayer perceptrdWLP) and the RBF. PARADIGM

For RBFs, some analytic studies exist which focus prima-
rily on generalization error: if5,6], average case analyses = RBF networks have been successfully employed to per-
are performed employing a Bayesian framework to studyform supervised learning in many real-world tasks; they have
RBFs under a stochastic training paradigm[Th a bound proved a valuable alternative to MLPs. These tasks include
on generalization error is derived under the assumption thathaotic time-series predictidr23], speech recognitiof24],
the training algorithm finds a globally optimal solution. De- and data classificatiof25].
tails of studies of RBFs from the perspective of the PAC The RBF is a universal approximator for continuous
framework can be found i8] and references therein. These mappings—it can approximate any continuous function to
methods focus on a training scenario in which a model isarbitrary accuracy given a sufficient number of hidden units
trained on dixed setof examples using a stochastic training [26]. The RBF architecture consists of a two-layer network
method. (see Fig. 1 in which each layer is fully connected to its
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rameters, and hence requires an optimization technique, such

as gradient descent, to estimate the parameters. The second

approach is computationally more expensive, but usually

leads to greater accuracy of approximation. This paper inves-

tigates the nonlinear approach in which basis function cen-

ters are continuously modified using gradient descent to al-
HIDDEN NODES low convergence to more optimal models.

There are two methods in use for gradient descent. In
batch learning one attempts to minimize the additive train-
ing error over the entire dataset; adjustments to parameters

are performed once the full training set has been presented.
Q ooo Q [NPUTNODES The alternative approach, examined her@ridine learning

in which the adaptive parameters of the network are adjusted
after each presentation of a new datapoint; obviously one
may employ a method which is a compromise between the

E li | d i dtwo extremes. There has been a resurgence of interest ana-
successor. For simplicity, a single output node is utiize lytically in the on-line method, as technical difficulties

throughout the analysis. The activation function of the hid- caused by the variety of ways in which a training set of given

den nodes is radially symmetric in input space; the magni size can be selected are avoided, so techniques such as the
tude of the activation given a particular datapoint is usually arephca method are unnecessary.

decreasing function of the distance between the input vector

of the datapoint and the center of the basis function. The

output layer computes a linear combination of the activations  1ll. GENERALIZATION AND SYSTEM DYNAMICS

of the basis functions, parameterized by the weightbe- e . . . .

tween hidden and output layers. The function computed by It is difficult to examine generalization without having

an RBE network withK hidden units is therefore somea priori knowledge of the target function since for any
finite number of datapoints, there are an infinite number of

functions that will fit these points exactly. In this work, we

fo(H=2, Wp Sy(&) =W-s, (1)  utilize a student-teacher framework, in which a teacher net-

b=1 work produces the training data which is then learned by the
student. This has the advantage that we can control the learn-

where £ is the input vector applied to the input layes,  ing scenario precisely, facilitating the investigation of cases
denotes the response of basis functiorands represents the  sych as the exactly realizable case, in which the student ar-
vector of hidden unit responses of the network. chitecture matches that of the teacher, the over-realizable
The most common choice for the basis functions is thecase, in which the student can represent functions that cannot
Gaussian function, which will be employed as the hiddenpe achieved by the teacher, and the unrealizable case in
unit transfer function throughout the paper. Therefore theyhich the student has insufficient representational power to

OUTPUT NODE

FIG. 1. RBF network architecture.

response of basis functidmto input vector£ is emulate the teacher.
; A training set consists oP input-output pairs £,y*),
so(&=exyd — [§—my| @ where I=u<P. In the_tralmr_\g sce_nano_examlned here, the
b 2073 ' components of the typic8d dimensional input vecto#* are

chosen as uncorrelated Gaussian random variables of mean

where each hidden node is parametrized by two quantities: @, variancecrg, while the scalar outpug” is generated by
centerm in input space, corresponding to the vector definedapplying&* to the deterministic teacher RBF. This represents
by the weights between the node and the input nodes, andageneraltraining scenario since, being universal approxima-
width og. tors, RBF networks can approximate any continuous map-

Two general methodologies exist which allow the adjust-ping to a desired degree. Noise is not employed in this paper;
ment of the parameters of the RBF to approximate the targehis will be investigated in a further publication. The map-
function. One approach involves fixing the parameters of th@ing implemented by the teacher is denoted bythe vector
hidden layer(both the basis function centers and widths of hidden-to-output weights of the teacher is represented by
using an unsupervised technique such as clustering, settingaaM dimensional vectow® while the center of teacher basis
center on each data point of the training set, or even pickingunction (TBF) u is denoted byn,. The vector of teacher
random valuegfor a review sed27]). This leaves only the basis function responses to input vecfois represented by
hidden-to-output weightes to adapt, which makes the prob- an M dimensional vectot. For simplicity, the TBF widths
lem linear in those weights. Although fast to train, this ap-are equal to those of the student; the framework does allow
proach generally results in suboptimal networks since thehem to differ, but this complicates matters greatly without
basis function parameters are not fixed with respect to thedding much insight. The function computed by the teacher
targets in the training data, and do not take account of thés therefore
values ofw. The alternative is to adapt the hidden layer
parameters, either just the center positions or both center T
posmqns and widths, in conjuncngn W't.h the adaptation of fr (&= 2 W exp( 2U )—wo-t. 3)
w. This renders the problem nonlinear in the adaptable pa- 20
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We approach the problem of calculating system evolutiorNote that scaling the learning rate withKlfloes not make a
by replacing the set dil-dimensional vectorsn, which de-  significant difference in this case, since the thermodynamic
scribe the position in input space of the student basis fundimit has not been employed fdx, in comparison to the
tions, by a set of macroscopic variables representing thexact MLP calculation where adiabatic elimination should be
means and variances of the overlaps:employed for restoring the self-averaging properties of the
Qpc=my-m;,Ry,=my-ny, andT,,=n,-n,. We will con-  overlaps[28].
centrate on the evolution of the means of these quantities; the These averages are again Gaussian integrals, so they can
relevance of their variances will be quantified and examinedye carried out analytically. The averaged expressions for
as well. The evolution of the system will be described iNAQ,AR, andAw are given in the Appendix.
terms of the evolution of these macroscopic variables and of Iterating the difference equatioii8)—(8), allows the evo-
the hidden-to-output weights. lution of the learning process to be tracked. This allows one

The definition of generalization error that we employ isto examine facets of learning, such as specialization of the
the most common in the neural networks literature—the quahidden units. Since generalization error dependQd®, and
dratic deviation betweefi; andfg w, one can also use these equations with (Bjto track the

evolution of generalization error.

Ec=(3(fs—f)?), 4
where(- - -) denotes an average over input space. B. Variance and the thermodynamic limit
Substituting Egs(2) and (3) into Eq. (4) gives Previous work in this are@l2—15 has relied upon the

thermodynamic limifi.e., P—o~,N—o andP/N= «, where
a is finite). Taking this limit makes the macroscopic vari-
ables self-averaging, allows one to ignore fluctuations in the
updates of the means of the overlaps due to the randomness
of the training examples, and permits the difference equa-
' ® tions of gradient descent to be considered as differential
equations. The thermodynamic limit is hugely artificial for
The indice,c, ... u,v, ..., represent student and teacherlocal RBFs; as the activation is localized, the-c limit
centers, respectively, running from 1koand toM accord-  implies that a basis function responds only in the vanishingly
ingly. We assume the input distribution to be Gaussian, sainlikely event that an input point falls exactly on its center,
the averages are Gaussian integrals and can be perform#tgre is no obvious reasonable rescaling of the basis func-
analytically. Each average has dependence on combinatiotisns (for instance, utilizing exp-(|é—my||%)/(2Na3)]
of Q,R, and T depending on whether the averaged basisliminates all directional information as the cross term
functions belong to student or teacher; the full expression i§- m, vanishes in the thermodynamic linitThe price paid

1
Ec=>{ 2 WoWe(SpSe)+ > wWiwd(t,t,)
2 bc uv

- 2% WpW(Spty)

given in the Appendix. for not taking this limit is that one has repriori justifica-
tion for ignoring the fluctuations in the update of the adap-
A. System dynamics tive parameters due to the randomness of the training ex-

. L .___ample
The learning d;grl?mmsp in this wzork follows the gradient By making assumptions as to the form of these fluctua-
descent rule, my""=my+ 7/(Nog) p(§—mp), Where  igng it is possible to derive equations describing their evo-
0= (fr—fg)wps, and 7 is the learning rate which is explic- |ytion: the method is mentioned [8] and also if29] for the
itly scaled with 1N. Expressions for the time evolution of simpler case of the SCM; we have extended it to deal with

the mean overlaps & andR can be derived adaptive hidden-to-output weightsee alsd15]).
7 To quantify the effect of the variances we will derive a set
AQpe V= — ([ So(E—mMP) - mP+ 5.(€&—mP)-mP] of dynamical equations, parallel to those representing the
< be ) NU§< i ° ¢ ¢ b dynamics of the means, for describing the dynamics of the

variances. As the learning rate is usually small we will focus

2
n LZ) (3pdo(&—mp)-(£&~mP)), ()  onfirst order terms iny, which dominate the dynamics, and
Nog ignore update terms of ordey. Casting the update Egs.
(6)—(8) into a general form, whera represents a generic
_n b system parameter and the scaling paranietés set toN for
{ ARoy >_Na§<5b(§ M) Nu)- @) Q andR, and toK for w

The hidden-to-output weights can be treated similarly. In
general, one may choose different learning rates for the dy-
namics of the centers and of the hidden-to-output weights.
Here, we use the same learning rate but scale it differentl
(with 1/K, in agreement with results obtained by Ried 28]

for the MLP), yielding

ap*1=ap+LlFa. 9
a

Yve then assumésimilar to [29]) that the update function
F and the parametex can be written in terms of a mean and
fluctuation, such that

U
( AWy )= ((Fr=To)sy). ® Fa=Fa+F. and a=at\7l,a, (10
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wherea denotes an average value aadrepresents a fluc- activated during training[Fig. 2(@), dashed curve, with
tuation due to the randomness of the example. The statig=7.0]. In this case, the generalization error approaches a
correction terms of29] are neglected, as 9], as they are finite value asP—« and the task is not solved. Between
much smaller than the included fluctuation terms. these extremes lies a region in which the symmetric subspace
Combining Eqs(9) and(10), and averaging with respect is escaped quickly, anBE;—0 asP—o for the realizable
to the input distribution, we arrive at a set of coupled differ-case[Fig. 1(a), solid curve, with»p=0.9]. The SBFs become
ence equations which describe the evolution of the variancespecialized and, asymptotically, the teacher is emulated ex-
actly. These results for the learning rate are qualitatively

_— e OFy e OFy o~ imi _
A(3B)= n 2 (3T) _b+2 (B3 _a+(Fan) . similar to those found for SCMs and MLP$2-15.
VvLalp\ © ac c ac
(12 B. An example of system evolution

Applying this general method to each pair of adaptive quan- There are four distinct phases in the learning process,

tities allows the evolution of the variances for the entire sys-WhICh are described with reference to an example of learning

tem to be calculated. The averages are again Gaussian anddd€xactly realizable task. This task consists of a network of
are analytically tractable; the expressions that result for thtr-:hre‘; stu;jehnt basis fun;]:tmn@SBF_s) learning a graded
instantaneous variancéB ,F,) are given in the Appendix.  cacher of three TBFs, whegradedimplies that the square

It has been shown that the variances must vanish asym lorms of the TBFediagonals off) differ from one another;

totically for realizable casef9], and we will show in Sec. '0F this sk, Tep=0.5, T1,=1.0, andT,=1.5. As previ-
IVF that they are small enough throughout the evolution ofously stated, the widths of the student basis functions are

the system to allow a description of the system in terms ofonsidered fixed and equal to those of the teacher for sim-
the evolution of the means. plicity; also note that the teacher always produces a conti-

nous mapping and noise is not employed.
For this particular task, we choose the teacher to be un-
correlated, with the off-diagonals of set to O, and the
Although the framework enables us to consider a wideteacher hidden-to-output weight® to 1. The learning pro-
range of cases we will limit the experiments and the analysigess is illustrated in Figs.(&—-2(d); Fig. 2a) (solid curve
in this paper to realizable cases where the number of studeshows the evolution of generalization error, calculated from
basis functionsSSBF9 equals the number of teacher basisgq, (5), while Figs. Zb) and Zc) show the evolution of the
functions(TBFs). . . . equations for the means &, Q, andw, respectively, calcu-
~ The system evolutions described below are obtained by,ieq by iterating Eq<6)—(8) from random initial conditions
'tera(;."?g the dlﬁe1e3c$ equartllo(?)”—(B)_ frorg.rangom initial 55 gescribed above. Input dimensionality: 8, learning rate
conditions sampled from the following distribution : . 4 . :
and w, are san?pled fromU[0,10°4], V\?hile Qe 2#& 1;=_O.9, input vananceaézl, and basis function width
Ry from a uniform distributionlJ[ 0,10 °], which represent UB_hl were emaloyed. .
random correlations expected by arbitrary initialization of The picture t__at emerges mirrors that qf the SCM. and
LP [14,15. Initially, there is a shortransient phase in

systems of the size we employ. The evolutions computetl,}/I ’ ) ,
describe the mean behavior, assuming the variances are neljtich the overlaps and hidden-to-output weights evolve
from their initial conditions until they reach an approxi-

ligible; these evolutions can then be used to find the evolu )
tion of generalization error via Ed5). mately steady valueR=0 to P=4000). Thesymmetric
phase then begins, which is characterized by a plateau in the

evolution of the generalization errdsee Fig. 2a), solid
curve, P=4000 toP=5x10%], corresponding to a lack of
With all the TBFs positive, analysis of the time evolution differentiation amongst the hidden units; they are unspecial-
of the generalization error, overlaps and hidden-to-outpuized and learn an average of the hidden units of the teacher,
weights for various settings of the learning rate reveals theso that the student center vectors and hidden-to-output
existence of three distinct behaviors sifis chosen to be too weights are similafFigs. 2b)—2(d)]. The difference in the
small (here,»=0.1), there is a long period in which there is overlapsR between student center vectors and teacher center
no specialization of the SBFs, and no improvement in genvectors[Fig. 2(b)] is only due to the difference in the lengths
eralization ability: the process becomes trapped in a symmetf various teacher center vectors; if the overlaps were nor-
ric subspace of solutions; this is the symmetric phase. Givemalized, they would be identical. The symmetric phase is
asymmetry in the student initial conditiofiise., inR, Q, or  followed by asymmetry-breakinghase in which the SBFs
w), or of the task itself, this subspace will always be escapedgarn to specialize, and become differentiated from one an-
but the time period required may be prohibitively lafiégg.  other P=5x10" to P=1.7x 10°). Finally there is a long
2(a), dotted curvgé The length of the symmetric phase in- convergencephase, as the overlaps and hidden-to-output
creases with the symmetry of the initial conditions. At theweights reach their asymptotic values. Since the task is real-
other extreme, ify is set too large, an initial transient takes izable, this phase is characterizedBy— 0 [Fig. 2(a), solid
place quickly, but there comes a point from which the stu-curve], and by the student center vectors and hidden-to-
dent vector norms grow extremely rapidly, until the point output weights approaching those of the teacliee.,
where, due to the finite variance of the input distribution andQgy=Rgo= 0.5, Q11=R1;=1.0,Q2=R,,= 1.5, with the off-
local nature of the basis functions, the SBFs are no longediagonal elements of bothQ and R being zero;

IV. ANALYZING THE LEARNING PROCESS

A. The importance of the learning rate
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FIG. 2. The exactly realizable scenario with positive TBFs. Three SBFs learn a graded, uncorrelated teacher of three TBFs with
Two=0.5,T1;=1.0, andT»=1.5. All teacher hidden-to-output weights are set t@al describes the evolution of the generalization error as
a function of the number of examples for several different learning rapes0(1,0.9,7.0);(b) and (c) follow the evolution of overlaps
between student and teacher center vectors and among student center vectors, respectivét)), whilgors the evolution of the mean
hidden-to-output weights.

Vb,w,=1). Arbitrary labels of the SBFs were permuted to the symmetric phase; this can be seen by comparing the evo-

match those of the teacher. lution of the generalization error for this tagkig. 3a)],
These phases are generic in that they are observed, sonféashed curvewith that for the previous taskFig. 3(a), solid

times with some variation such as a series of symmetric an@urvel. There is no longer a plateau in the generalization

symmetry-breaking phases, in every on-line learning sceefror. Correspondingly, the symmetries between SBFs break
nario for RBEs so far examined. immediately, as can be seen by examining the overlaps be-

tween student and teacher center vecidfig. 3(b)]; this

should be compared with Fig(l® which denotes the evolu-

tion of the overlaps in the previous task. Note that the pla-
The symmetric phase is a phenomenon which depends agaus in the overlap&ig. 2(b), P=4000 toP=5x10*] are

the symmetry of the task as well as that of the initial condi-not found for the asymmetric task.

tions. One would expect a shorter symmetric phase in inher- The elimination of the symmetric phase is an extreme

ently asymmetric tasks. To examine this, a task similar taesult caused by the small size of the student netwitnee

that of Sec. IV B was employed, with the single change beinchidden unit. For networks with many hidden units, one

that the sign of one of the teacher hidden-to-output weightsinds instead a cascade of subsymmetric phases, each shorter

was flipped, thus providing two categories of targets: posithan the single symmetric phase in the corresponding task

tive and negative. The initial conditions of the student re-with only positive targets, in which there is one symmetry

C. Task dependence

mained the same as in the previous task, wjth0.9. between the hidden units seeking positive targets and another
The evolution of generalization error and the overlaps forbetween those seeking negative targets.
this task are shown in Figs(& and 3b), respectively. Di- This suggests a simple and easily implemented strategy

viding the targets into two categories effectively eliminatesfor increasing the speed of learning when targets are pre-
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0.0020 the student norm®),. are very similar, as are the student-

\( student correlations, sQ,,=Q and Q. ,.=C, whereQ

| —— Positive Targets becomes the square norm of the SBFs, @nid the overlap
0.0015 1 - —- Positive/Negative Targets ‘ i between any two differen.t SBFs. . .

L Following the geometric argument pf4], which is con-
Eg \‘ sistent with the numerical results, in the symmetric phase,

1

the SBF centers are mostly confined to the subspace spanned
by the TBF centers. Sincg,,= ¢, , the SBF centers can be
written in the orthonormal basis defined by the TBF centers,
with  the components being the overlapsR:
mb=EL"f:1Rbunu. As the teacher is isotropic, the overlaps
are independent of both andu and thus can be written in
terms of a single paramet®&. Further, this reduction to a
single overlap parameter leads@=C=MR?, so the evo-
lution of the overlaps can be described as a single difference
equation forR. The analytic solution of Eqg6)—(8) under
these restrictions is still rather complicated. However, since
we are primarily interested in large systems, i.e., lafgave
examine the dominant terms in the solution. Expanding in
1/K and discarding second order terms renders the system
simple enough to solve analytically for the symmetric fixed
point; fixed point values will be denoted like*

0.0005

0.0000

(a)

15 ¢

1.0

05 . 1
R R _K N 1 \og+1]]" (12
0.0 Rt | Py

One should point out that this expression breaks down for
certain values ofrg as the first order term in K/ as well as
higher order terms diverg@n approximate expression may
1.0 50 100 150 200 also be derived for the divergence poirthe stability of the
P x103 fixed point, and thus the breaking of the symmetric phase,
can be examined via an eigenvalue analysis of the dynamics
: _ ) of the system near the fixed point. We map the equations of
e e e e Sorenoton () and ) 1o equaion of deviains fom he sy-
' etric fixed point viar=R—R*, s=S—-S*, q=Q—Q*,

learn a graded, uncorrelated teacher of three TBFs withm_C_C:* R bering th trical t ab
Toy=0.5, Ty;=1.0, andT,,=1.5.w0=1,wo=—1, andwd=1.(@ C— . Remembering the geometrical argument above,

describes the evolution of the generalization error for this case anf!® Student weight vectors can be expanded in terms of the
presents for comparison the evolution in the case of all positiveStudent-teacher overlaps; as we are in the smalegime,

TBFs, while (b) shows the evolution of the overlaps between stu-COmponents which are orthogonal to the space spanned by
dent and teacher centeRs the teacher vectorsy, may be neglected, so that the student

normsQ and overlap<C are completely determined by the
student-teacher overlaps. Writing these overlaps as:
Rpu=Rbpy+ S(1— 6py) gives  the relations Q
=R?+ S*(K—1) andC=2R S+ S?(K—2). If these relations
Sre expanded to first order in the deviatiorsnds, it can be

dominantly positive(negativg: eliminate the bias of the
training set by subtractingadding the mean target from
each target point. This corresponds to an old heuristic amon
RBF practitioners. It follows that the hidden-to-output DS, ~ .
weights should be initialized from a zero-mean distribution.>¢€" thay=c=2R*[r +5(K—1)], so thatQ*=C* is pre-

Alternatively, a bias unit could be used, but this adds anothezeLV;{?o;%fg?trsgigﬁ ﬁ?ltshs atlsg ;(r)gs;te;;(\j/\géh t??irt;ltjr(])?géerd
parameter to the training process. d Y P '

Thus the dynamical quantities reduce to thres:andc.
Performing an eigenvalue analysis on the resulting system
reveals one dominant positive eigenvalue) (that scales
The symmetric phase, in which there is no specializatiorwith K and represents a perturbation which breaks the sym-
of the hidden units, can be analyzed in the realizable case hyetries between the hidden units by amplifying asymmetries
employing a few simplifying assumptions. It is a phenom-in the initial conditions(see[16] for a detailed analysis of
enon that is predominantly associated with smglso terms  this for the SCM; the remaining modes, which also scale
of »?> may be neglected. The hidden-to-output weights aravith K, are irrelevant as they preserve the symmetry. This
clamped to+1. The teacher is taken to hisotropic TBF result is in contrast to that for the SCM14]), in which the
centers havédentical normsof 1, each having no overlap dominant eigenvalue scales withKl/This implies that for
with the others, thereforé,,= §,, . This has the result that RBFs the more hidden units in the network, ttaster the

D. Analyzing the symmetric and symmetry-breaking phases
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symmetric phase is escaped, resulting in negligible symmet-
ric phases for large systems, while in SCMs the opposite is
true; this result has been confirmed by simulation. This dif-
ference is caused by the contrast between the localized na-
ture of the basis function in the RBF network and the global
nature of sigmoidal hidden nodes in SCM. In the SCM case,
small perturbations around the symmetric fixed point result
in relatively small changes in error since the sigmoidal re-
sponse changes very slowly as one modifies the weight vec-
tors. On the other hand, the Gaussian response decays expc
nentially as one moves away from the center, so small
perturbations around the symmetric fixed point result in mas-
sive changes that drive the symmetry breaking. WKein-
creases the error surface looks very rugged emphasising the
peaks and increasing this effect, in contrast to the SCM case
where more sigmoids means a smoother error surface.

E. Calculating the convergence

The speed and conditions of convergence of the online
gradient descent process is of great interest, both practically
and theoretically. To investigate this for the RBF in the re-
alizable case, we again use an isotropic teacher, defined by
Tuw =06y, andwl=1. This means the evolution of each stu-
dent hidden unit will be very similar, so the evolving system
can be simplified to five adaptive variables:
Qbc=QctC(1~6he), Rpu=Ropy+S(1-6p,) and
w,=w, controlled by Eqs(6)—(8). Note that we do not ex-
pect the variances to play a significant role in defining the
maximal and optimal learning rates as they have been shown
to vanish in the asymptotic regime.

Linearizing these equations about the known fixed point
of the dynamicsQ=1, C=0, R=1, S=0, w=1 yields the
eigenvalues controlling the rate of convergence and the sta-
bility. There is a singlgnonlinear in#) critical eigenvalue,

N1, which controls stability, a linear eigenvalue;, which

can influence convergence rate, and three further eigenvalue:
which play no significant role, being much smaller for all
values of7. The eigenvalues are illustrated in Figaydfor a
network of ten hidden units with input dimensidw= 10.
The maximum learning rate, defined by the crossing of the
zero line, can be seen to be controlled solely\bynote that
this maximum only applies during convergence, not neces-
sarily during the other phases of learning. The theory pre-
dicts a maximum learning rate af= 33 for this scenario; the
accuracy of the method was tested by training real RBF net-
works by initializing them near the known fixed point, and
determining the value o) at which convergence failed to
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occur, which in this case wag=32.3 with standard devia- ©
tion of 0.8.

The rate of convergence, defined for a particujdry the
smaller of\; and\,, is optimized either by setting to the
minimum of \; or to the intersection of ; with \,, depend-

ing on the exact learning scenarie.g., for other teacher infiyence the optimal learning rate in some caéest in the ex-
vector lengths or basis widths ample shown heje(b) compares the eigenvalues for systems with

It is interesting to compare the convergence of the systergdaptive and fixed hidden-to-output weights, showing thatis
with adaptive hidden-to-output weights to that where theunaffected.(c) shows the scaling of the maximum and optimal
hidden-to-output weights are fixdd7]. Figure 4b) shows learning rates with<. The maximum learning rate . scales with
the two significant eigenvalues for both cases in identicall/K; for fixed hidden-to-output weights, the optimal learning rate
scenarios\; is unchanged, so the maximum learning rate is» , also scales with ¥, while for adaptive weightsy . rapidly
unaffected and is therefore a function of the hidden layer, noapproaches; .

1/K

FIG. 4. Convergence phas@) shows the eigenvalues for the
system with adaptive hidden-to-output weights. Oxlyand\, are
significant; A, controls the maximum learning rate, while can
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FIG. 5. Quantification of the variance@) and (b) show the theoretical variances, plotted as error bars on the mean, for the dominant
overlapsRy, andR,; and for the hidden-to-output weightg, andw,, respectively, for a realizable task involving two SBFs learning two
TBFs. The fluctuations are negligible; this is typically true, unless the task and initial conditions are highly symic)ednid.(d) compare
the theoretical variances to those from simulations in which RBFs were trained 1000 times on the above task. The variances for the dominant
overlaps and hidden-to-output weights are shown, and it can be seen that there is an excellent correspondence.

the output layer(this is also true for the MLAR15]). With F. Quantification of the variance
fixed hidden-to-output weights, the gradient)of becomes

) To demonstrate that it is reasonable to consider only the
much steeper and in fact does not affect the rate of converﬁ1ean of the updates of the svstem parameters. we present
gence which is controlled solely by;. P y P ' P

The scaling of the maximum and optimal learning rateg€Sults qua_ntifying t_he effe(_:t Of th? varia_n(_:e fqr a typica_ll
with the number of hidden units can also be found. For bottf@se, showing that its contribution is negligible in compari-
fixed and adaptive hidden-to-output weights, the maximun$0on with the mean values. In pathological cases in which the
learning rate scales as KL/ For fixed hidden-to-output task and the initial conditions of the system are highly sym-
weights, the optimal learning rate also scales &5, While  metric, it is possible to obtain variances which are much
for adaptive hidden-to-output weights, the situation is mordarger than those which typically occur—this issue is ex-
complicated. In parameter regions where the convergengelored for the SCM irf29].
rate is optimized by minimising ;, the optimal learning rate To examine the effect of the variance we use a training
again scales as K/ however, in regions where optimization scenario in which a student network comprising two SBFs is
is achieved by finding the intersection aff and A,, »  trained on examples generated by a two node teacher. The
changes at a slower rate tharK1/These effects are illus- initial conditions were constructed by randomly initializing
trated in Fig. 4c), in which maximum and optimal learning the weights of an RBF network by drawing each input-to-
rates are plotted againstKl/Note that a increasesy,;  hidden and hidden-to-output weight fronj@J0.1], and then
approacheg, . rapidly for the adaptive hidden-to-output case mapping the network into the appropriate system parameters,
(N, becomes less stegpmplying that it becomes difficultto so as to provide realistic conditions. The input dimension
optimize the process and still obtain convergence to the co was set to 10, and the learning raj¢o 0.1. The mean and
rect fixed point. variance update equatior(6)—(8) and (11) were iterated
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FIG. 6. Comparison of theoretical results with simulations. The simulation results are averaged over 50 trials; the labels of the student
hidden units were permuted where necessary to make the averages meaningful. The empirical generalization error was approximated with the
test error on a 1000 point test set. Error bars on the simulations are at most the size of the larger asterisks for thglpvands], and
at most twice this size for the hidden-to-output weighith]. Input dimensionalityN=>5, learning ratep= 0.9, input variancer§= 1 and
basis function widthr3=1.

(b)

from these initial conditions until the means had reached ament between the theory and simulation. The slight discrep-
approximately steady state, thus providing a trajectory formncy up to abouP=1.5x 1C° is, we believe, due to the fact

each variance. that terms ofy? are discarded in the theory.
In Figs. 5a) and Jb), the fluctuations are plotted as error
bars on the mean for the dominant student-teacher overlaps G. Simulations

R and for the hidden-to-output weights (fluctuation mag- o ]
nitudes forQ are very similar to those d®). The magnitudes To demonstrate the validity of thg theoretical average-
of the fluctuations are very small, particularly so frFor ~ ¢ase results, we compared the evolution of the system found
w, the peak ratio of fluctuation magnitude to mean is apbY iterating Eqs(6)—(8) to empirical results found by train-
proximately 0.012, while foR, it is 0.008. These ratios are ing real RBF networks via on-line gradient descent. The em-
typical for nonpathological scenarios. Note that for realizablePirical values ofQ,R, andw were calculated from the trajec-
cases, the fluctuations must eventually disappear. tories of the weights during training. Generalization error
To demonstrate that the theoretical calculation of the evowas empirically estimated via the average error on a 1000-
lution of the variances gives valid results, gradient descenpoint test set, and the results were averaged over 50 trials,
learning was used to train actual RBF networks 1000 timesvith the arbitrary labels of the SBFs permuted appropriately
for the configuration and initial conditions described aboveto ensure the averages were meaningful.
The average evolutions of the parameters were employed to We present the results from a typical set of trials: in this
calculate empirical fluctuations about the means. The result®alizable scenario, three SBFs learn three TBFs with
of this are plotted in Figs.(6) and %d), in which the theo- #=0.9 andN=5. The excellent correspondence between the
retical fluctuations are shown versus the simulationtheory and simulations is demonstrated in Fig. 6. Figye 6
fluctuations—it can be seen that there is very good agreeshows theoretical versus empirical generalization error—the
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theoretical value is always within one standard deviation othe convergence correctly. For both casgs,was found to

the empirical value. In Figs.(B)—6(d), the theoretical trajec- scale as K.

tories ofQ,R, andw are plotted versus their empirical coun-  As the thermodynamic limit could not be employed, it
terparts; again, the correspondence is excellent. Error bamas necessary to quantify the variances of the system param-

are not shown here as they are approximately the size of thR{ers to ensure that the average value was meaningful. Equa-
symbols. tions describing the evolution of these variances were de-

rived, and it was shown that, for a typical case, the variances
are small. The equations for the evolution of the means and
the variances were shown to be valid descriptions of the real
On-line learning using the gradient descent algorithm hasystem via simulations.
been examined for the RBF by employing a method which As a next stage we intend to analyze the use of noise and
allows the calculation of generalization error as well as theegularizers within on-line learning for the RBF. We expect
elucidation of the features of the learning process, such a§'€ addition of output noise to the teacher to affect the
the specialization of the hidden units. asymptot!c values Qf tr_\e overlaps:, and produce a nonzero
The four distinct stages of training were highlighted— asymptotic generalization error; it may also change the

initially there is a short transient phase as the parametet€"9th and values of the overlaps during the symmetric
move from their initial values into the symmetric phase, in phase. We also expect t_hat a Iearnmg_ rate decay _sce(_JIuIe will
which the hidden units are undifferentiated. SpecializatioP® required for converging to the optimal generalization er-
gradually develops in the third, symmetry-breaking phase, a r. The _ad_dmon of input noise .to the teach(.arlls expecteq to
the hidden units move towards their particular destinations, ave a similar effect, perhaps with the sensitivity of the train-
finally there is a convergence phase in which the parametef89 Process to the noise being greater.

asymptotically reach their final values. The role of the learn-
ing rate was also examined—with a small learning rate
training proceeds unnecessarily slowly, with a long trapping The authors would like to thank Ansgar West, David Bar-
time in the symmetric phase. With too high, the process ber, and Bernhard Schottky for useful discussions. D.S.
does not converge to the correct fixed point; the magnitudewould like to thank the Leverhulme Trust for their support
of the student center vectors grow until the center plays n@F/250/K).

part in the learning process. Between these extremes lies a

V. CONCLUSION

ACKNOWLEDGMENTS

range in which the process converges quickly to the correct APPENDIX
target. o o 1. Generalization error
The relative importance of the stages of training depends
to a large extent on the nature of the task itself. When the 1 o 0
task is highly symmetric, the symmetric phase becomes Ee=3 % Wchlz(b,C)+u2 WyW,l2(u,v)
v

dominant; in this case it would be desirable to introduce
artificial methods of breaking the symmetry of the student. 0

For very asymmetric tasks, the symmetric phase may be over - ZbE WpWl z(b,U)] : (A1)
quickly or even nonexistent. Since in practical use the task is !
usually understood poorly, it is important to understand the
behavior of the network over a whole range of tasks.

The symmetric phase was analyzédr the realizable 7 . . .
casg, and the value of the system parameters at the symmet-{AQy) = ——{Wy[ J2(b;c) — Qpc! 2(b)]+w[ J»(c;b)
ric fixed point found. The breaking of the symmetric phase Nog
was also examined via an eigenvalue analysis—there is a L
significant behavioral difference between the RBF and the —Qpcl 2(c)]}+
SCM in that the more hidden units, the greater the length of
the phase in the SCM, but the shorter its length in the RBF.
This is due to the difference in the properties of the activa-
tion function for the networks—the RBF has a localized ac- 7 e L
tivation function, while that of the SCM is global. (ARp) = ——=Wp{J,(b;u) =Ry, »(b)}, (A3)

The convergence properties of the system in the realizable Nog
case were also examined via eigenvalue analysis. A single
critical eigenvalue controls stability of the target fixed point, (Awy) = L—z(b)- (A4)
and thus determines the maximum valuespthat can be K
employed (7). The optimal settingy . of 7 can also be

AQ, AR, and Aw

2
n _
NO'ZB) WbWC{K4(b!C)

+Qpel 4(b,c)— J4(b,c;b)— J4(b,c;c)}, (A2)

found, which depends on a combination of the critical eigen- I, J,andK

value and a secondinear in %) eigenvalue. The results were

compared to those previously found for the RBF using non- |—2(b):2 Wﬂlz(b,u)—E Wyl o(b,d), (A5)
adaptive hidden-to-output weights;. was unchanged, and u d

is thus a function of the hidden layef ., with adaptive

hidden-to-output weights approaches as the number of J.(bc)= 03 (b.u:c)— 3.(b.d: AG
hidden units increases, so it becomes very hard to optimize 2(bic) 2u: Wudz(b,uic) ; Walz(b.dic), (A6)
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1 4(b,0)=2, WaWel4(b,c,d,e)+ >, wowll,(b,c,u,v) Ka(h,c)=2, waweKy(b,c,d,f)+ > wowlK,(b,c,u,v)
de uv de uv
—2% wqwll4(b,c,d,u), (A7) —2% wWqwK 4(b,c,d,u). (A9)

Jub,cif)=2, wagweda(b,c,d,e;f)
de

+ > wlwld,(b,c,u,v;f) I, J, andK
uv
To render the notation more compact, we introduce a ge-
_22 w2, (b,c,d,u:f) (A8 neric overlap parametés; indicesi,j,f,g, andh may there-
qu dTuma T fore apply to SBFs or RBFs as appropriate,

Q;; if i and ] both referto SBFs
U;={ Ry Iif irefers toaSBFand toaTBF (A10)
Ti; if i and j bothreferto TBFs,

—U;i—U; + (U + U +2U;) /203
15(i,])= (21 ,02) N2 ex;{ iUyt "202 i+ 2051206l : (A1)
B
. UigtUje|
(1,15 6) = ———=—|12(i,]), (A12)
2|20'B

-U;—U;;—Ui—U Ui+ U+ U+ U+ 2(Ujj+ Ui+ U+ U+ U+ U
|4(i,j,f,g)=(2|40'§)leeXF{ ii ji ff gg}exr{ i ji ff [o]¢] ( ij if ig jf jg fg)

205 4l 4o (A]_;’g)
. Upn+tUjptUg+Ugp|
‘J4(|1J1frg;h)= : ]2| 2 2 |4(|,],f,g), (A14)
40B
2Nloa+Uii+Ujj+Ug+Ugy 2(U; +Uj+Ujg+U g+ U g+ U
K(i.j gy =| et D Dt Dt Doa | 205 # Uit Vg * et Vit Uie) )y 5 1 . (A15)
4l 405 4lyog
I
2. Instantaneous variances +WWK1JJ,(b,e,c,d)
e 1 &y Ly

Defining, for brevity

o o +wwyK1JJ,(c,d,b,e)
P I cWe 4\, M, ’

(AL6) AQpARg,= Uog{wwyK13J,(b,d,c,u)

AQpAQye=Log{wywyK134(b,d,c,e) AR AR, = Uogwew KIJJ4(b,c,u,v), (A19)
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AQpeAwy=1/03{wy[ J4(b,d,c)~ Qpel 4(b,d)] 3. Other quantities
_ _ 2524 o2
+wc[J4(c,d,b) —Qpcl 4(c,d)]}, _%%79s
lo=—F—72—7, (A23)
(A20) 20’BO'§
ARy AWy = Logwp{ J 4(b,d,u) = Rpy 1 4(b,d)},
(A21) 40'§+ O'é
— N — li=—F 2= (A24)
AWAW= T 4(b,¢) = Qucl 2(b) 1 5(C).  (A22) 2030%
[1] T. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phy85, 499 [15] P. Riegler and M. Biehl, J. Phys. 28, L507 (1995.
(1993. [16] M. Biehl, P. Rieglar, and C. Wohler, J. Phys. 29, 4769
[2] D. MacKay, Neural Comput4, 415(1992. (1996.
[3] D. Haussler, inFoundations of Knowledge Acquisition: Ma- [17] J. Freeman and D. Saad, Neural Computatitm be pub-
chine Learningedited by A. Meyrowitz and S. Chipm&Klu- lished.
wer, Boston, 1994 Chap. 9. [18] J. Kim and H. Sompolinsky, Phys. Rev. Let6, 3021(1996.
[4] H. Schwarze, J. Phys. 26, 5781(1993. [19] H. S. N. Barkai, and H. Sompolinsky, Phys. Rev. L&,
[5] J. Freeman and D. Saad, Neural CompuitLl000(1995. 1415(1995.

[6] J. Freeman and D. Saad, Neural N&t1521(1996.
[7] P. Niyogi and F. Girosi, Al Laboratory, Massachusetts Insti-
tute of Technology Technical Report No. 1467, 1984pub-

[20] M. Biehl and P. Riegler, Europhys. Left8, 525(1994).
[21] O. Kinouchi and N. Caticha, J. Phys. 26, 6161(1993.
[22] M. Copelli and N. Caticha, J. Phys. 28, 1615(1995.

lished. . .
[23] M. Casdagli, Physica 35, 335(1989.
[8] (Sl.glgglden and P. Rayner, IEEE Trans. Neural Nedy368 [24] M. Niranjan and F. Fallside, Comput. Speech Ladg275

(1990.
[25] M. Musavi et al, Neural Networkss, 595 (1992.
[26] E. Hartman, J. Keeler, and J. Kowalski, Neural Comgu210

[9] T. Heskes and B. Kappen, Phys. Rev4A 2718(1991).
[10] T. Leen and G. Orr, irAdvances in Neural Information Pro-
cessing Systemedited by J. Cowan, G. Tesauro, and J. Al-

spector(Morgan Kaufmann, San Mateo, CA, 1994/0l. 6, (1990.

pp. 477-484. [27] C. Bishop,Neural Networks for Pattern Recognitig@®xford
[11] S. Amari, Neurocomputing, 185 (1993. Univgrsity Press, _OXfOfd, 1995
[12] M. Biehl and H. Schwarze, J. Phys. 28, 643 (1995. [28] P. Riegler(unpublished
[13] D. Saad and S. Solla, Phys. Rev. L&, 4337(1995. [29] D. Barber, D. Saad, and P. Sollich, Europhys. L8#, 151

[14] D. Saad and S. Solla, Phys. Rev5E 4225(1995. (1996.



